Skip to main content
Log in

Combining Seismic Noise Techniques for Landslide Characterization

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A strong topographic relief and the presence of weakly consolidated sediments create favorable conditions for the development of landslides around the eastern rim of the Fergana Basin (Central Asia). In summer 2012, a field experiment employing small aperture seismic arrays was carried out on an unstable slope, using ambient vibration recordings. The aim of the study was to constrain the seismic response of a potential future landslide and to map lateral and vertical changes in the shear-wave velocity of the surficial soil layers. Strong variations of horizontal-to-vertical spectral ratios in terms of amplitude and directionality indicated clear differences in local site effects, probably reflecting the stability of different sections of the slope. Results further showed resonant frequencies of both the entire unstable block, as well as for smaller, individual parts. The use of an ad hoc, passive seismic tomography approach based on noise correlograms allowed for the mapping of the shear-wave velocities of the sliding material, even in cases of significant topography relief. Based on the recording of seismic noise only, we clearly identified a low-velocity body of weakly consolidated claystone and limestone material, which can be interpreted as the landslide body, with laterally varying thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdrakhmatov, K., H. B. Havenith, D. Delvaux, D. Jongmans, P. Trefois (2003), Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia), J. Seismol. 7, 203–220

  • Aki, K. (1957), Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin of the Earthquake Research Institute 35, 415–456

  • Aki, W. H., K. Lee (1976), Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. A homogeneous initial model, J. Geophys. Res. 81, 4381–4399

  • Aki, K., P. G. Richards (1980), Quantitative Sesimology: Theory and Methods, Vol. II., W. H. Freeman and Company, San Francisco, USA

  • Arai, H., K. Tokimatsu (2004), S-wave velocity profiling by inversion of microtremor H/V spectrum, Bull. Seismol. Soc. Am. 94, 53–63

  • Assimaki, D., E. Kausel (2007), Modified topographic amplification factors for a single-faced slope due to kinematic soil-structure interaction, J. Geotech. Geoenvir. Eng. 133, 1414–1431

    Google Scholar 

  • Bard, P. Y., M. Bouchon (1985), The two-dimensional resonance of sediment-filled valleys, Bull. Seismol. Soc. Am. 75, 519–541

  • Bensen, G. D., M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, Y. Yang, M. H. Ritzwoller, (2007), Processing ambient noise seismic data to obtain reliable broadband surface wave dispersion measurements, Geophys. J. Int. 169, 1239–1260

  • Bindi, D., K. Abdrakhmatov, S. Parolai, M. Mucciarelli, G. Grünthal, A. Ischuk, N. Mikhailova, J. Zschau (2012), Seismic hazard assessment in Central Asia: Outcomes from a site approach, Soil Dyn. Earthq. Eng. 37, 84–91

  • Bogoslovsky, V. A., A. A. Ogilvy (1977), Geophysical methods for the investigation of landslides, Geophysics 42, 562–571

  • Bonnefoy-Claudet, S., F. Cotton, P. Y. Bard (2006a), The nature of noise wavefield and its applications for site effects studies: A literature review, Earth-Science Reviews 79, 205–227

  • Bonnefoy-Claudet, S., C. Cornou, P. Y. Bard, F. Cotton, P. Mozco, J. Kristek (2006b), H/V ratio: a tool for site effect evaluation. Results from 1D noise simulations, Geophys. J. Int. 167, 827–837

    Google Scholar 

  • Bourdeau, C., H. B. Havenith (2008), Site effects modelling applied to the slope affected by the Suusamyr earthquake (Kyrgyzstan, 1992), Eng. Geol. 97, 126–145

  • Bourdeau, C., H. B. Havenith, J. A. Fleurisson, G. Grandjean (2004), Numerical modelling of seismic slope stability, in: Engineering geology for infrastructure planning in Europe - a European perspective, R. Hack, R. Azzam, R. Charlier (eds.), Lecture notes in Earth Sciences 1004, 671–684

  • Bozzano, F., L. Lenti, S. Martino, A. Paciello, G. S. Mugnozza (2011), Evidences of landslide earthquake triggering due to self-excitation process, Int. J. Earth Sci. 100, 861–879

  • Brabb, E. E. (1991), The world landslide problem, Episodes 14, 52–61

  • Burjanek, J., G. Gassner-Stamm, V. Poggi, J. R. Moore, D. Fäh (2010), Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int. 180, 820–828

  • Burjanek, J., J. R. Moore, F. X. Yugsi Molina, D. Fäh (2012), Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int. 188, 559–569

  • Campillo, M., A. Paul (2003), Long-range correlations in the diffuse seismic coda, Science 299, 547–549

  • Capon, J., R. J. Greenfield, R. J. Kolker (1967), Multidimensional maximum-likelihood processing of a large aperture seismic array, Proc. IEEE 55, 192–211

    Google Scholar 

  • Caris, J. P. T., T. W. van Asch (1991), Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps, Eng. Geol. 31, 249–276

  • Chávez-García, F. J., L. R. Sánchez, D. Hatzfeld, (1996), Topographic site effects and HVSR. A comparison between observations and theory, Bull. Seismol. Soc. Am. 86, 1559–1573

  • Danneels, G., C. Bourdeau, I. Torgoev, H. B. Havenith (2008), Geophysical investigation and dynamic modelling of unstable slopes: case-study of Kainama (Kyrgyzstan), Geophys. J. Int. 175, 17–34

  • Del Gaudio, V., J. Wasowski (2007), Directivity of slope dynamic response to seismic shaking, Geophys. Res. Lett. 34, L12301, doi:10.1029/2007GL029842

  • Del Gaudio, V., J. Wasowski, (2011), Advances and problems in understanding the seismic response of potentially unstable slopes, Eng. Geol. 122, 73–83

  • Dilley, M., R. S. Chen, U. Deichmann, A. Lerner-Lam, M. Arnold (2005), Natural disaster hotspots. A global risk analysis, The World Bank, Hazard Management Unit, Washington, DC

  • Ekström, G., G. A. Abers, S. C. Webb (2009), Determination of surface-wave phase velocities across USArray from noise and Aki′s spectral formulation, Geophys. Res. Lett. 36, L18301, doi:10.1029/2009GL039131

  • Fell, R., O. Hungr, S. Leroueil, W. Riemer (2000), Geotechnical engineering of the stability of natural slopes and cuts and fills in soil, in: Proc. GeoEng2000, Int. Conf. on Geotechnical and Geol. Engineering, Melbourne, Australia, Technomic Publishing, Lancaster, 1, 21–120

  • Fleming, K., M. Picozzi, C. Milkereit, F. Kuehnlenz, B. Lichtblau, J. Fischer, C. Zulfikar, O. Ozel, SAFER and EDIM working groups (2009), The Self-Organising Seismic Early Warning Information Network (SOSEWIN), Seismol. Res. Lett. 80, 755–771

  • Frischknecht, C., J. J. Wagner (2004), Seismic soil effect in an embanked deep alpine valley: a numerical investigation of two-dimensional resonance, Bull. Seismol. Soc. Am. 94, 171–186

  • Geli, L., P. Y. Bard, B. Jullien, (1988), The effect of topography on earthquake ground motion: a review and new results, Bull. Seismol. Soc. Am. 78, 42–63

    Google Scholar 

  • Grandjean, G. (2006), Imaging subsurface objects by seismic P-wave tomography: numerical and experimental validations, Near Surf. Geophys. 4, 279–287

  • Haskell, N. A. (1960), Crustal reflection of plane SH waves, J. Geophys. Res. 65, 4147–4150

    Google Scholar 

  • Havenith, H. B., D. Jongmans, K. Abdrakhmatov, P. Trefois, D. Delvaux, I. A. Torgoev (2000), Geophysical investigations of seismically induced surface effects: case study of a landslide in the Suusamyr valley, Kyrgyzstan. Surv. Geophys. 21, 349–369

  • Havenith, H. B., D. Jongmans, E. Faccioli, K. Abdrakhmatov, P. Y. Bard (2002), Site effect analysis around the seismically induced Ananevo rockslide, Kyrgyzstan, Bull. Seismol. Soc. Am. 92, 3190–3209

  • Havenith, H. B., I. Torgoev, A. Meleshko, Y. Alioshin, A. Torgoev, G. Danneels (2006), Landslides in the Mailuu-Suu Valley, Kyrgyzstan – Hazards and impacts, Landslides 3, 137–147

  • Ignatiev, I. V. (1886), Earthquake in the Tokmak district in 1885, Proc. of the Imperial Russian Geographic Soc. 22, 150–164 (in Russian)

  • Jongmans, D., S. Garambois (2007), Geophysical investigation of landslides: A review, Bull. Soc. Geol. Fr. 178, 101–112

  • Jongmans, D., G. Bievre, F. Renalier, S. Schwartz, N. Beaurez, Y. Orengo (2009), Geophysical investigation of a large landslide in glaciolacustrine clays in the Triéves area (French Alps), Eng. Geol. 109, 45–56

  • King, J., B. Tucker (1984), Observed variations of earthquake motion across a sediment-filled valley, Bull. Seismol. Soc. Am. 74, 137–151

  • Konno, K., T. Ohmachi (1998), Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am. 88, 228–241

    Google Scholar 

  • Kugler S., T. Bohlen, T. Forbriger, S. Bussat, G. Klein (2007), Scholte-wave tomography for shallow-water marine sediments, Geophys. J. Int. 168, 551–570

  • Long, L. T, A. H. Kocaoglu (2001), Surface-wave group velocity tomography for shallow structures, J. Environ. Eng. Geophys. Publ. 6, 71–81

  • Mainsant, G., E. Larose, C. Brönnimann, D. Jongmans, C. Michoud, M. Jaboyedoff (2012), Ambient seismic noise monitoring of a clay landslide: Toward failure prediction, J. Geophys. Res. 117, F01030, doi:10.1029/2011JF002159

  • Méric, O., S. Garambois, J. P. Malet, H. Cadet, P. Gueguen, D. Jongmans (2007), Seismic noise-based methods for soft-rock landslide characterization, Bull. Soc. Geol. Fr. 178, 137–148

    Google Scholar 

  • Michelini, A., T. V. McEvilly (1991), Seismological studies at Parkfield, I. Simultaneous inversion for velocity structure and hypocenters using cubic B-spline parameterization, Bull. Seismol. Soc. Am. 81, 524–552

    Google Scholar 

  • Moldobekov, B., A. Sarangoev, S. Usupaev, A. Meleshko (1997), Prognosis of natural hazards on the territory of the Kyrgyz Republic, 172 p., All-Press, Bishkek, Kyrgyzstan (in Russian).

  • Moore, J. R., V. Gischig, J. Burjanek, S. Loew, D. Fäh (2011), Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland), Bull. Seismol. Soc. Am. 101, 3110–3116

  • Nadim, F., O. Kjekstad, P. Peduzzi, C. Herold, C. Jaedicke (2006), Global landslide and avalanche hotspots, Landslides 3, 159–173

  • Nakamura, Y. (1989), A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface, Q. Rep. Railway Tech. Res. Inst. Japan 30, 25–33

    Google Scholar 

  • Nogoshi, M., T. Igarashi (1970), On the propagation characteristics of microtremors, J. Seism. Soc. Japan 23, 264–280 (in Japanese with English abstract)

    Google Scholar 

  • Nogoshi, M., T. Igarashi (1971), On the amplitude characteristics of microtremor, J. Seism. Soc. Japan 24, 26–40 (in Japanese with English abstract)

    Google Scholar 

  • Ohori, M., A. Nobata, K. Wakamatsu (2002), A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays, Bull. Seismol. Soc. Am. 92, 2323–2332

    Google Scholar 

  • Parolai, S., P. Bormann, C. Milkereit (2002), New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany), Bull. Seismol. Soc. Am. 92, 2521–2527

    Google Scholar 

  • Petley, D. N. (2009), On the impact of urban landslides, in: Engineering Geology for Tomorrow’s Cities, M. G. Culshaw, H. J. Reeves, I. Jefferson, T. W. Spink (eds.), Engineering Geology Special Publications 22, 83–99, London, UK

  • Picarelli, L., G. Urciuoli, M. Ramondini, L. Comegna (2005), Main features of mudslides in tectonised highly fissured clay shales, Landslides 2, 15–30

  • Picozzi, M., S. Parolai, D. Bindi, A. Strollo (2009), Characterization of shallow geology by high-frequency seismic noise tomography, Geophys. J. Int. 176, 164–174

  • Picozzi, M., C. Milkereit, S. Parolai, K. H. Jaeckel, I. Veit, J. Fischer, J. Zschau (2010), GFZ Wireless Seismic Array (GFZ-WISE), a wireless mesh network of seismic sensors: New perspectives for seismic noise array investigations and site monitoring, Sensors 10, 3280–3304

  • Pilz, M., S. Parolai, M. Picozzi, D. Bindi (2012), Three‐dimensional shear wave velocity imaging by ambient seismic noise tomography, Geophys. J. Int. 189, 501–512

    Google Scholar 

  • Pilz, M., S. Parolai, D. Bindi (2013), 3D passive imaging of complex seismic fault systems: evidence of surface traces of the Issyk-Ata fault (Kyrgyzstan), Geophys. J. Int. 194, 1955–1965

    Google Scholar 

  • Renalier, F., D. Jongmans, M. Campillo, P. Y. Bard (2010), Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation, J. Geophys. Res. 115, F03032, doi:10.1029/2009JF001538.

  • Roessner, S., H. U. Wetzel, H. Kaufmann, A. Sarnagoev (2005), Potential of satellite remote sensing and GIS for landslide hazard assessment in Southern Kyrgyzstan (Central Asia), Nat. Haz. 35, 395–416

  • Roten, D., D. Fäh, C. Cornou, D. Giardini (2006), Two-dimensional resonances in Alpine valleys identified from ambient vibration wavefields, Geophys. J. Int. 165, 889–905

    Google Scholar 

  • Sanchez-Sesma, F. J., M. Campillo (1993), Topographic effects for incident P, SV and Rayleigh waves, Tectonophys. 218, 113–125

  • Schuster, R. L., R. W. Fleming (1986), Economic losses and fatalities due to landslides, Bull. Am. Assoc. Eng. Geol. 23, 11–28

  • Shapiro, N. M., M. Campillo (2004), Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett. 31, L07614

  • Spudich, P., M. Hellweg, W. H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions, Bull. Seismol. Soc. Am. 86, S193–S208

    Google Scholar 

  • Steimen S., D. Fäh, F. Kind, C. Schmid, D. Giardini (2003), Identifying 2D resonance in microtremor wave fields, Bull. Seism. Soc. Am. 93, 583–599

  • Strollo A., S. Parolai, K. H. Jäckel, S. Marzorati, D. Bindi (2008), Suitability of short-period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz, Bull. Seismol. Soc. Am. 98,671–681

    Google Scholar 

  • Strom, A., O. Korup (2006), Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslides 3, 125–136

  • Toomey, D. R., G. R. Foulger (1989), Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland, J. Geophys. Res. 94, 17497–17510

    Google Scholar 

  • Travelletti, J., J. P. Malet (2012), Characterization of the 3D geometry of flow-like landslides: a methodology based on the integration of heterogeneous multi-source data, Eng. Geol. 128, 30–48

  • Trifonov, V. G., O. V. Soboleva, R. V. Trifonov, G. A. Vostrikov (2002). Recent geodynamics of the Alpine-Himalayan collision belt, Transactions of the Geological Institute RAS 541, 224 p. (in Russian)

  • Tucker, B., J. King (1984), Dependence of sediment-filled valley response on input amplitude and valley properties, Bull. Seismol. Soc. Am. 74, 153–165

  • Tukey, J.E. (1974), Introduction to today’s data analysis, in: Proceedings of the Conference on Critical Evaluation of Chemical and Physical Structural Information, pp. 3–14, D. R. Lide, M. A. Paul (eds.), National Academy of Sciences, Washington, D.C.

  • Tursugaziev, B. T., O. W. Petrov, W. P. Zubkov, A. G. Konjuchov, G. S. Biskae, N. G. Wlasov (2008), Geological map of the Kyrgyz Republic, edt. by the State Agency for Geological and Mineralogical Resources of the Republic of Kyrgyzstan and the Russian Scientific Research Institute Karschinsky, Saint Petersburg, Russia

  • Xia, J., R. D. Miller, C. B. Park (1999), Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave, Geophys. 64, 691–700

  • Yang, Y., M. H. Ritzwoller (2008), Characteristics of ambient seismic noise as a source for surface wave tomography, Geochem. Geophys. Geosys. 9, doi:10.1029/2007GC001814

  • Yanovskaya, T. B., P. G. Ditmar (1990), Smoothness criteria in surface wave tomography, Geophys. J. Int. 102, 63–72

  • Yao, H., R. van der Hilst (2009), Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography with application to SE Tibet, Geophys. J. Int. 179, 1113–1132

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the editor, Fabio Romanelli, and two anonymous reviewers for providing helpful comments that allowed us to significantly improve the manuscript. This research has been carried out under the projects MIIC—Monitoring and Imaging by Interferometric Concepts (Project 03G0736B) and TIPTIMON—Tien Shan-Pamir Monitoring Program (Project 03G0809), funded by the German Ministry of Education and Research (BMBF). We are grateful to the people of Papan for their kind support and assistance during the field work. K. Fleming kindly revised our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pilz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilz, M., Parolai, S., Bindi, D. et al. Combining Seismic Noise Techniques for Landslide Characterization. Pure Appl. Geophys. 171, 1729–1745 (2014). https://doi.org/10.1007/s00024-013-0733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0733-3

Keywords

Navigation